Some Ricci Flat (pseudo-) Riemannian Geometries

نویسنده

  • Metin Gürses
چکیده

We define a class of two dimensional surfaces conformally related to minimal surfaces in flat three dimensional geometries. By the utility of the metrics of such surfaces we give a construction of the metrics of 2N dimensional Ricci flat (pseudo-) Riemannian geometries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sigma Models, Minimal Surfaces and Some Ricci Flat Pseudo Riemannian Geometries

We consider the sigma models where the base metric is proportional to the metric of the configuration space. We show that the corresponding sigma model equation admits a Lax pair. We also show that this type of sigma models in two dimensions are intimately related to the minimal surfaces in a flat pseudo Riemannian 3-space. We define two dimensional surfaces conformally related to the minimal s...

متن کامل

Some Higher Dimensional Vacuum Solutions

We study an even dimensional manifold with a pseudo-Riemannian metric with arbitrary signature and arbitrary dimensions. We consider the Ricci flat equations and present a procedure to construct solutions to some higher (even) dimensional Ricci flat field equations from the four dimensional Ricci flat metrics. When the four dimensional Ricci flat geometry corresponds to a colliding gravitationa...

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

The Calabi Construction for Compact Ricci Flat Riemannian Manifolds

1. The main result and some consequences. In 1956 E. Calabi [6] attacked the classification problem of compact euclidean space forms by means of a special construction, called the Calabi construction (see Wolf [14, p. 124]). Here we announce that the construction can be extended to compact riemannian manifolds whose Ricci curvature tensor is zero (Ricci flat). Of course, it is not known if ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000